Electrical Safety in Construction

29 CFR 1926 Subpart K – Electrical

Presented by: ETTA, OSH Division 919-807-2875

Objectives

In this course, we will discuss the following:

- Common electrical hazards
- Standards relating to those hazards
- Electrical equipment defects/hazards
- Tools/techniques used in identifying hazards

29 CFR 1926 - Subpart K

- 1926.400 Introduction
- 1926.402 Applicability
- 1926.403 General requirements
- ■1926.404 Wiring design and protection
- 1926.405 Wiring methods, components, and equipment
- 1926.406 Specific purpose equipment and installations
- 1926.407 Hazardous (classified) locations
- 1926.408 Special systems
- ●1926.416, 417, 431, 432, 441 Safety-related practices and maintenance
- 1926.449 Definitions

Common Electrical Hazards

- Electric shock/electrocution occurs, when current flows through the body damaging the body
- Electrical burns are caused by arc blast or hot conductors
- Indirect falls from ladders, scaffolds or other walking and working surfaces

Common Electrical Hazards

- Explosions can occur due to electricity (ignition source)
 - Example
 - » When the atmosphere contains flammable vapors
- Electrical fires can be caused by overloading a circuit, appliance, faulty wiring, etc.

General Requirements

- Electrical equipment must be free from recognized hazards that can cause death or serious physical harm to employees
 - Suitability for installation
 - Mechanical strength and durability
 - Electrical insulation
 - Heating effects under condition of use
 - Arcing effects
 - Classification by type, size, voltage, current capacity, specific use

General Requirements

 Listed, labeled, or certified equipment must be installed and used in accordance with instructions included in the listing, labeling or

certification

Nationally Recognized Testing Laboratories

- Canadian Standards Association (CSA International)
- Communication Certification Laboratory, Inc. (CCL)
- Curtis-Straus LLC (CSL)
- FM Approvals LLC (FM)
- Intertek Testing Services NA, Inc. (ITSNA)
- MET Laboratories, Inc. (MET)
- NSF International (NSF)
- National Technical Systems, Inc. (NTS)
- SGS U.S. Testing Company, Inc. (SGSUS)
- Southwest Research Institute (SWRI)
- TUV SUD America, Inc. (TUVAM)
- TUV SUD Product Services GmbH (TUVPSG)
- TUV Rheinland of North America, Inc. (TUV)
- Underwriters laboratory Inc. (UL)
- Wyle Laboratories, Inc. (WL)

Box Not Approved as a Pendant

General Requirements

 Equipment shall be installed and used in accordance with instructions

Used in Accordance With Instructions

General Requirements

 Each service, feeder, and branch circuit, at its disconnecting means or over current device, shall be legibly marked to indicate its purpose

General Requirements

Live parts of electric equipment operating at 50 volts or more shall be guarded against accidental contact by cabinets or other forms of enclosures, or by another suitable method

- Polarity of connections
 - No grounded conductor may be attached to any terminal or lead so as to reverse designated polarity

Correct Polarity

Reversed Polarity

Wiring Design and Protection 1926.404(b)(1)(i)

 Employer shall use either ground fault circuit interrupters

Or

 An assured equipment grounding conductor program to protect employees

- Portable generators need not be grounded if:
 - Supplies only equipment mounted on the generator and/or cord and plug equipment is plugged into receptacle mounted on the generator
 - Noncurrent-carrying metal parts of equipment and grounding conductor terminals of the receptacle are bonded to generator frame

NODOL PHOTO LIBRAR

- Vehicle-mounted generators; vehicle frame may serve as system grounding if:
 - Frame of the generator is bonded to the vehicle frame and
 - Generator supplies only equipment located on the vehicle and/or equipment plugged into the generator

and

- Noncurrent-carrying metal parts of equipment and grounding conductor terminals of the receptacles are bonded to the generator frame, and
- System complies with all other provisions of this section

Wiring Design and Protection 1926.404(f)(6)

 Path to ground from circuits, equipment, enclosures must be permanent and continuous

Wiring Design and Protection 1926.404(f)(7)(iv)

- Equipment connected by cord and plug
 - Noncurrent-carrying metal parts which may become energized must be grounded if:
 - » In a hazardous location
 - » Operated at over 150 V to ground
 - Except guarded motors and appliances permanently insulated from ground
 - » Hand held motor-operated tools
 - » Equipment used in wet and/or conductive locations
 - » Portable hand lamps

Wiring Design and Protection 1926.405(a)(2)(ii)(I)-(J)

- Flexible cords and cables must be protected from damage
- Extension cord sets used with portable electric tools and appliances must be of three-wire type and must be designed for hard or extra-hard usage

 Conductors entering boxes, cabinets, or fittings must be protected from abrasion

Wiring Design and Protection

1926.405(b)(1)

 Unused openings in cabinets, boxes and fittings must be effectively closed

- All pull boxes, junction boxes, and fittings must be provided with a cover
- If metal covers are used, they must be grounded

Cherie Berry, Commissioner of Labor

Wiring Design and Protection 1926.405(g)(1)(i)

- Flexible cords and cables must be suitable for conditions of use and location
- Permitted uses of flexible cords and cables
 - Pendants and fixture wiring
 - Portable lamps and appliances
 - Elevators cables, cranes, and hoists
 - Stationary equipment to facilitate their frequent interchange
 - Appliances where the fastening means and mechanical connections are designed to permit removal for maintenance and repair

Wiring Design and Protection 1926.405(g)(1)(iii)

- Prohibited uses of flexible cords and cables
 - As substitute for fixed wiring of structure
 - Run through holes in walls, ceilings or floors
 - Run through doors, windows or similar openings
 - Attached to building surfaces
 - Concealed behind building walls, ceilings, or floors

Wiring Design and Protection 1926.405(g)(2)(iv)

- Flexible cords shall be connected to devices and fittings so that strain relief is provided
 - Will prevent pull from being directly transmitted to joints or terminal screws

 Working spaces, walkways, and similar locations shall be kept clear of cords so as not to create a hazard to employees

Safety-Related Work Practices 1926.416(e)

- Extension cords shall not be stapled, hung from nails or suspended by wire
- Worn or frayed electric cords must not be used

Tools for Identifying Hazards

- An electrical receptacle voltage tester with GFCI tester
 - Line voltage probes

Summary

In this course, we discussed the following:

- Common electrical hazards
- Standards relating to those hazards
- Electrical equipment defects/hazards
- Tools/techniques used in identifying hazards

Thank You For Attending!

Final Questions?

